Structural basis for the dual U4 and U4atac snRNA-binding specificity of spliceosomal protein hPrp31.
نویسندگان
چکیده
Human proteins 15.5K and hPrp31 are components of the major spliceosomal U4 snRNP and of the minor spliceosomal U4atac snRNP. The two proteins bind to related 5'-stem loops (5'SLs) of the U4 and U4atac snRNAs in a strictly sequential fashion. The primary binding 15.5K protein binds at K-turns that exhibit identical sequences in the two snRNAs. However, RNA sequences contacted by the secondary binding hPrp31 differ in U4 and U4atac snRNAs, and the mechanism by which hPrp31 achieves its dual specificity is presently unknown. We show by crystal structure analysis that the capping pentaloops of the U4 and U4atac 5'SLs adopt different structures in the ternary hPrp31-15.5K-snRNA complexes. In U4atac snRNA, a noncanonical base pair forms across the pentaloop, based on which the RNA establishes more intimate interactions with hPrp31 compared with U4 snRNA. Stacking of hPrp31-His270 on the noncanonical base pair at the base of the U4atac pentaloop recapitulates intramolecular stabilizing principles known from the UUCG and GNRA families of RNA tetraloops. Rational mutagenesis corroborated the importance of the noncanonical base pair and the U4atac-specific hPrp31-RNA interactions for complex stability. The more extensive hPrp31-U4atac snRNA interactions are in line with a higher stability of the U4atac compared with the U4-based ternary complex seen in gel-shift assays, which may explain how U4atac snRNA can compete with the more abundant U4 snRNA for the same protein partners in vivo.
منابع مشابه
RNA structural requirements for the association of the spliceosomal hPrp31 protein with the U4 and U4atac small nuclear ribonucleoproteins.
The kink-turn, a stem I-internal loop-stem II structure of the 5 ' stem-loop of U4 and U4atac small nuclear (sn) RNAs bound by 15.5K protein is required for binding of human Prp31 protein (hPrp31) during U4 and U4atac snRNP assembly. In box C/D snoRNPs a similar kink-turn with bound 15.5K protein is required for selective binding of proteins NOP56 and NOP58. Here we analyzed RNA structural requ...
متن کاملFunctional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA.
Activation of the spliceosome for splicing catalysis requires the dissociation of U4 snRNA from the U4/U6 snRNA duplex prior to the first step of splicing. We characterize an evolutionarily conserved 15.5 kDa protein of the HeLa [U4/U6.U5] tri-snRNP that binds directly to the 5' stem-loop of U4 snRNA. This protein shares a novel RNA recognition motif with several RNP-associated proteins, which ...
متن کاملHierarchical, clustered protein interactions with U4/U6 snRNA: a biochemical role for U4/U6 proteins.
During activation of the spliceosome, the U4/U6 snRNA duplex is dissociated, releasing U6 for subsequent base pairing with U2 snRNA. Proteins that directly bind the U4/U6 interaction domain potentially could mediate these structural changes. We thus investigated binding of the human U4/U6-specific proteins, 15.5K, 61K and the 20/60/90K protein complex, to U4/U6 snRNA in vitro. We demonstrate th...
متن کاملHuman U4/U6.U5 and U4atac/U6atac.U5 tri-snRNPs exhibit similar protein compositions.
In the U12-dependent spliceosome, the U4atac/U6atac snRNP represents the functional analogue of the major U4/U6 snRNP. Little information is available presently regarding the protein composition of the former snRNP and its association with other snRNPs. In this report we show that human U4atac/U6atac di-snRNPs associate with U5 snRNPs to form a 25S U4atac/U6atac.U5 trimeric particle. Comparativ...
متن کاملDetecting protein-induced folding of the U4 snRNA kink-turn by single-molecule multiparameter FRET measurements.
The kink-turn (k-turn), a new RNA structural motif found in the spliceosome and the ribosome, serves as a specific protein recognition element and as a structural building block. While the structure of the spliceosomal U4 snRNA k-turn/15.5K complex is known from a crystal structure, it is unclear whether the k-turn also exists in this folded conformation in the free U4 snRNA. Thus, we investiga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2011